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The game problem of the guiding of the controlled motion onto a given set is 

analyzed. The chances of the second player (the pursued) under a choice of strat- 
egies from the class of discontinuous controls formed on the feedback principle 

are investigated. For this purpose there are introduced into consideration the 
absorption sets defined for the classes of continuous, programed, and discontinuous 

controls, and their coincidence is proved. It is ascertained that the solution of the 

optimal deviation problem, which exists in the class of mixed and approximate 
strategies, may not necessarily exist in the class of discontinuous strategies form- 

alized whithin the scope of the theory of differential equations in contingencies. 

The contents of this paper border on the investigations in [ 1- 71. 

1. Let the controlled motion be described by the equation 

da: / dt = A (t)s + B (t)u - (2 (t)v (I.11 

where z is an n-dimensional system phase vector ; u and v are the control vectors of 
the first and second players ; A (t), B (t), c (t) are continuous matrix-valued functions 
of appropriate dimensions. In the phase space X, we are given a closed convex set M 
onto which the first player strives to guide system (1.1). while the second player, to the 
contrary, is not interested in realizing the condition x [t] e M. It is assumed that the 

realizations of the players’ controls are subject to the conditions 

u [tl E p, v[t] E Q (4.2) 
where P and Q are closed and bounded covex sets in the corresponding vector spaces. 

We shall assume that each player does not know the future behavior of his opponent but 
does know the position {t, x it] } realized at each current instant t . The initial posi- 
tion {to, X0} is given. 

The classes of mixed and approximate strategies of the first and second players were 
determined in [5. 61. It was shown that the classes of these strategies will be complete. 

An alternative [6] is valid for the class of mixed strategies, which in the case being con- 
sidered can be stated in the following way. 

Let {to, x0} be some initial position of the game, M be some closed set in the space 
of vectors {Z}. By UC”) and V(‘) we denote the classes of mixed strategies of the first 
and second players. One of the following two assertions is valid. 

(1) Either there exist an instant 6 > to and a straregy u, E UC”’ such that 
whatever be the strategy I’ E Vcc), any motion x [t] = z [t; to, x0, u,, V] hits 

on M not later than at the instant t = 6. 
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(2) Or for any arbitrarily large instant $ > to we can find a number e > 0 and 

a strategy 7, E V”“’ such that whatever be the strategy u E We’, the condition 

X [t] f,f& M” for ta < t & * will be fulfilled for any motion x [t] = x [t; to, X,,T 

u, V*l. 
Here x [t; t,, x0, u, V] are motions generated by strategies u, v and satisfying 

the initial condition X [toI = SO; the symbol M’ denotes a closed e-neighborhood of 
set M. 

Thus, the positional game problem posed above is always solvable in the class of mixed 
strategies, i. e. either we can find in the class u@) a strategy of the first player, guaran- 
teeing the contact of the point X [ 11 with the set M, or among the strategies V E V(‘) 
there exists a strategy for evasion. An analogous situation holds also for the class of 
approximate strategies 153. 

In this paper we examine wider classes of players’ strategies - classes of continuous 
strategies and classes of discontinuous controls formalized within the framework of dif- 

ferential equations in contingencies [S, 91. It is shown that these classes of strategies are 

not complete, i.e. the alternative stated above is not true for them. An example is pre- 
sented where there exists an evasion strategy Y, belonging to the class v@), which cannot 

be approximated by continuous strategies and by discontinuous controls determined in 
accordance with the tools of differential equations in contingencies. 

Let us describe the classes of players’strategies to be considered and let us determine 
the absorption sets corresponding to them. An investigation of the relations between 

these absorption sets allows us to establish the fact that the solution of the evasion prob- 
lem may not necessarily exist in the strategy classes being considered. By U, (V,) we 

denote the first (second) player’s set of programed controls, i, e. the set of arbitrary 
measurable vector-valued functions u (t) (v (1)) satisfying constraints (1.2) for almost 

all t > to . 
As the second strategy class U2 (V,) we choose the set of continuous vector-valued 

functions u = u (t, 3) (v = v (t, 2)) satisfying the condition u (t, z) E P (V (t, 
2) E 0) for all {t, x} . 

We specify the strategy class V* in the.fotlowing manner. Let V = V (t, 2) be a 
function which associates a closed convex set V (t, x) E 0 with each position {t, x> , 
such that as {t, X} changes the set v (t, X) varies upper-semicontinuously with respect 

to inclusion, namely: for any sequence {tk, Xk} converging to some point {t*, X*}., 
an arbitrary convergent sequence vb from the corresponding sets v (tk, Xk) has a limit 

point element from V (t*, X*). 
In the case when the first player acts in accordance to the program u (e) E U, 

while the second player chooses a control, being guided by a strategy v = ‘i/ (t, x) 
from class V*, by a motion X [t] of system (1.1) we shall mean every absolutely con- 
tinuous function x [t] which passes through the point X,, at the instant to and whose 
derivative satisfies almost everywhere the conditions 

dX(t]/dt = A (l)X ItI + B (~)~(~) - C (t)v ItIt v [t] E Ti (t, X IQ) (*.3) 

The existence of such a function x [t] follows from the theory of differential equa- 

tions in contingencies [8, 91. Thus, the third class V* of strategies will comprise all 
possible functions V = V (t, z) of the form described above. We remark that this class 
contains the second player’s discontinuous controls v = v (t, 2) formed on the feedback 
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principle ; here, the motions generated by such controls are determined in accordance 
with the theory of differential equations with a discontinuous right-hand side [8]. 

Using the strategy classes U1, VI, V,, V* introduced above, we mnstruct the follow- 

ing absorption sets [5-73 in the phase space X, . 
We define the set w, (z, fi) of programed absorption as the collection of all points 

W E: X,,, each of which possesses the property : for any programed control 2, ( .) E v, 
of the second player there exists a control u (.) E u, of the first player, such that 

under the action of this pair {U (9, 2, (t)}, z < t < 19., system (1.1) passes from 
the state z (7) = W to the state 5 (fi) E M. 

Analogously we construct the set Ws (z, 6) - the set of points w from X, satisfying 
the condition: for any control u ( .) E V, of the second player we can choose a control 

U( .) E U,of the first player, such that among the solutions z [t] of system (1. l), gen- 

erated by the pair {U (t), v (t, t)}, we can find a motion issuing from the point 

IC [T] = w and hitting on M at the instant @. 
We define the set W* (r, 6) as the collection of points w E X, such that whatever 

be the strategy v (s) E V*, there exists a control u (.) E U1 which generates a 

family of motions of system (1.1). containing the trajectory 2 [tJ satisfying the condi- 
tion!: z [r] = 10, LZ [6] E M. 

In n] it was shown that the equality 

w, (% fi) = W, (‘c, 6) (1.4) 
is valid for the sets constructed above. 

In this paper we shall show that 

WI (z, 6) = Ws (z, S) = w* (z, 6) 

This signifies the following. If the inclusion zO E w, (to, 6) is valid for the initial 
position {lo, so) of the game, i. e. if the second pIayer cannot prevent system (1.1) from 
being guided onto the set M at the instant 6 by using the programed controls v (.) e 
E V,, then he also cannot guarantee himself that M’will not be hit on by choosing 
strategies from class Vi or V*. Conversely, the relation z,, e W* (to, ZE) signifies 
that we can point out for the second player not only a strategy v. (s) E V* which guar- 
antees him that system (1.1) does not hit on the aim set M at the instant 6, but also 

that there exists a programed control v,, ( .) E VI which in pair with any u ( 0) E U, 
generates a motion 5 it], to < t < 6, of system (1. l), satisfying the conditions 

zIt,,l =xo, s[filqGMM. 

2. Theorem. The sets W, (z, 6), W, (z, 6), W* (z, 8) coincide, i.e., 

w, (z, 6) = w, (z, 6) = w* (f, 6) (--x,<z<@<=Joo) (2.1) 

Proof. The inclusion W, (IY, 6) j W* (7, 6) is obvious since the relation V, c V* 
is valid for the strategy cakes V, and V *. Then, the inclusion WI (7, a) 2 W* (% 6) 

holds by virtue of (1.4). 
Let us show that the inverse inclusion WI (r, tY) c IV* (t, 6) also is fulfilled. We 

assume the contrary. Let there exist k and 6 (- 05 < T < 6 < m) such that the fol- 
lowing relation w* (T, 6) 3 w1 (z, 6) (2.2) 

is fulfilled for the corresponding sets W1 (z, 6) and W* (T, 8)) i.e. there exists a point 
% for which the relations w* E WI (T, 6). w, e W* (t, t+) are fulfilled. This means 
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the following. If at the instant ‘F system (1.1) is at the point lu,, then for any programed 
control of the second player the first player can always choose a control u (.) E UL such 

that under the action of this pair the motion z It1 of system (1.1) passes from the position 

{‘r, w+3 to the point z [Sl E M at the instant 6. However, there exists for the second 

player a strategy v” = v” (t, 5) from the class V* such that all motions of system (1. I), 
generated by the pairs {u (. ), V” (.)J and issuing from the point s [zl = w* , do not hit 

on the set M at the instant 6. 

In order to obtain a con~adicti~ refuting f2.2) we carry out the following construc- 
tion. With each element u (t), z < i 6 Q of the set V, we associate a control u (t), 

r d t d 4, u (s) E U, such that the control pair Qu (-), v (.)I would carry system (1.1) 
from the state I 171 = wn into the state I [@I E M. We denote the set of all controls 

u (s) E U1 chosen in this manner for a given u (.) E Vl by ur (V (-)). The sets II, (FJ (.)) 
constructed are nonempty by virtue of the relation w* E WI (z, 6). Let us note here that 
the sets U,, V,, as well as Ur (u (s)) are bounded, closed and convex in L, 1% 61 as a 
cohsequence of the closedness and convexity of the sets M, P, Q and of the linearity of 

system (1.1). 
Let us consider a set S consisting of all possible pairs (u (s), v (.)I, where v (e) ranges 

over the strategy set V,. while u (.) is chosen from the corresponding sets Ur (V (.)). 

The nonemptiness of set S is an obvious consequence of the nonemptiness of the sets 

U1 (y (*)). The convexity of S also is obvious. 
We introduce into consideration a Banach space B [z, 61, whose elements are the vec- 

tor-valued functions @L (t), u (t)), 7 < t < 6 , with components from L, l-c, 61. We define 
the norm of the elements in B 1~. 61 by the relation 

In the space B [T., 61 the set S is bounded and weakly closed by virtue of the bounded- 
ness and weak closedness of the sets U,, V, in Lz [z, ft] and of the closedness of J@ in the 

phase space X,,. We construct a mapping of the set S into itself in the following way. 
Each pair (u (e), Y (-)) E S generates a motion I [t], r- < t < 6 of system (l,l), satis- 

fying the conditions s [zl = w*, x I@] E M. The strategy V” = v” (t, x), mentioned 
above in the explanation of relation (2.2), associates the sets v”[t] = -P (t, + It]) with 
this motion. Thus we have a mapping of the pair {u (t), v (t)) from S into a collection 
of sets I@ [tl (z < t f 6). With the collection of sets p [tl, T < t < 6, we associate 

further the set of functions 11) (.) E Lz IT, 91 satisfying almost everywhere on [z, Sj the 
following condition: 

(2.3) 

Because the sets V* (t, 2) are semicontinuous in {t, I} , it follows from the theory of dif- 

ferential equations in contingencies 18. 91 that the setof functions $ (s) E & [r, 61, 
satisfying condition (2.3), is not empty. Using each of these functions $ (s) we select 
a function ‘p (s) e II1 (1~) (.)), i.e. in such a way that the control pair Qq (-), Q (-)) 

would take system (1.1) from the state x fr] = w* into 5 [S] E M. This can be done 

since UI* E WI (z, fl). By Cp we denote the set of all possible pairs -& (-), 9 (*)I asso- 

ciated in this manner with the system of sets V” It], z g t < 6. By construction the 

system of sets v” [t], r < t < 6, corresponds to some completely determined pair {u (e), 
v (e)} E S and, hence, the set CD7 corresponding to Ir [ -1, also depends on this pair. 
We shall note this fact by writing ZL and v as arguments of the set @, i.e. d) = Q (u, v). 
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In passing we note the obvious fact that @ (u, v) c S. Thus, we have constructed a map- 

ping of the set S into itself. 
In what follows our problem will be to prove the existence of a fixed point of this 

mapping, namely, of a pair {ur (a), u+ (.)3 E S for which the relation 

{u* (*)* v* (*)I E Q, (% %) (2.4) 

is valid. The presence of a fixed point will signify that, on the one hand, the motion 
+ it], T < t < 6 of system (1.1). corresponding to the control -pair &, (.), u* (.)I satis- 
fies the conditions z [z] = w+ and z [fl] E M. On the other hand, this same motion 

z+ f-1 by the definition,l.of the set @ (% %) corresponds to the strategy pair {uI (s), 

Y (*)I and, therefore;by virtue of the relation W, & iv* (z, a) and by the definition of 
the strategy v” (.) E V * , should not hit onto the set M at the instant 6. We thus arrive 

at a contradiction with assumption (2.2) and, consequently, we prove equality (2.1). 
To prove the existence of a fixed point of the mapping constructed above, we make 

use of a theorem of S. Karlin and H. F. Bohnenblust ( @.0-J, p. 496). Let us verify the ful- 
. 

fillment of its hypotheses: 
1) the nonemptiness of CD (u, u) has been shown above ; 
2) the convexity of @ (u, u) is a consequence of the convexity of the sets Ur, 

V (t, z), M and of the linearity of system (1.1); 
3) the union of all sets CD (u, u)over {IL (.), u (.)I E S is contained in the set S 

which possesses the property of sequential o-compactness, i. e. in every sequence of 
points of S there is contained a subsequence converging weakly to some point of this 
set S (this property follows from the sequential h-compactness of the classes VI and U1 
and from the closedness of M in X,); 

4) let US show the upper semicontinuity of the mapping (U (.), u (.I] in CD (u, u). 

We take an arbitrary sequence of points {ul, (. ), vk (.)I converging weakly to (~1~ (- ), 
u+(-Was k-m, and also a certain sequence {% (-), $]k (+)} 

{(Pk (‘)* $1, (*)} E @ (‘k* Un) (k = 1) 2,. . .) (2.5) 

converging weakly to \cp+ (. ), $,* (. ),. We need to show the validity of the inclusion 

{cp*(.)* Ip*(*))E@(u,, a*) (2.6) 

By virtue of the sequential o-compactness of the set S the weak limits of the elements 
of S also belong to this set, i. e. {cp, (.), I#, (.)} E S. But then, from the method of con- 
struction of S and CD (u,, u*) it follows that to prove (2.6) it remains to verify the 

validity of the inclusion q* (t) E p (t, .+ ftl) = v,O ]tl (2.7) 

which should be fulfilled for almost all t E [z, tt]. Here z, [t], is the motion of system 
(1.1) under the action of the control pair (u+ (e), v, (e)) on the interval [T, 61 with the 
initial condition z 1sJ = w+. For a summable function $i* (t), r < t < 6, almost all 
points of the interval [T, 61 are Lebesgue points, i. e. the relation 

i+A 
1 

$* (t) = limx c ,t % (5)dC as A 4 0 (2.8) 

is fulfilled at them. Let us show that relation (2.7) is fulfilled for the function $, (+) 
at all its Lebesgue points, i. e. (2.7) is not fulfilled other than on a set of measure zero. 

Let t, E [z, 61 be some Lebesgue point of the function $* (.). We specify a certain 
number e > 0. Now, for the given c we select. by virtue of (2.8), a number A1 > 0 in 
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such a way that the inequality 

II 

t, A 

4% @*I - + 
5 II 

‘h(t)d6 <E (2.Y) 

holds for all A < 8,: From the weak convergeALe in space B I-c, i+] of the vector-valued 

functions {cplr (. ), qk (- )} follows the weak convergence of their components in L, i-c, 81 . 
Therefore, from the convergence of the sequence {‘Pk (‘)t$k (q)) to the point {‘F* (*), 

‘$* (*)I follows the convergence in the weak topology in spaces Lz 17, 81 of the sequences 

(‘ph. (.)1 and {$k.(:)} to the points rPp* (*) andv, (s) , respectively. 

For almost all t E 1% @] the relation 

$]r (t) E vQ (t, xk It]) = vk” [d 

is valid for the functions $k (r), where zk [t] are the motions of system (1.1) from the 
initial state zk [z] = Q generated by the controls {uk (.), vk (.)l. Note that for each 

t E [T, fil the sequence {zh it11 converges to z* [t], where z+ It], z 6 t < 6 is the 
trajectory of system (1.1) corresponding to the pair {u, (.), v,, (-)> and to the initial 
condition xL [z] = we. Furthermore, the set of these trajectories is uniformly bounded 

and equicontinuous. and, therefore, from the sequence Jzk 1.1) we can pick out a subse- 

quence converging uniformly to z* I-1 . In order not to complicate the notation, in what 

follows we shall take the sequence (zk 1. I} to be uniformly convergent to z* [ * 1. Using 
this property, as well as the upper semicontinuity of 1”’ (1, z) with respect to the collec- 

tion {t, z}, for the t, and E > 0 chosen above we can find a number AZ > 0 and a num- 
ber lit such that the inclusion V,” [tl c VI(‘) [l*l (2.10) 

where ~2~) is a closed convex a-neighborhood of the set v”* , is fulfilled for all t, 

]t-&[<A2andk>K,. 
We introduce into consideration the following auxiliary functions on It*, 91: 

t 

s 

t 

yk (‘1 = vk (5) dfe Ye (t) = $II. (E;) df 
t. 

s 
t, 

The sequence yk (t) converges to y, (t) as k -.+ 03, pointwise on Ed*, 61. It is easy to 
show that the set of these absolutely continuous functions is uniformly bounded and 

equlcontinuous, and hence, from the sequence yk (a: we can pick out a subsequence con- 

verging uniformly to y, (. ) as k + 00. Once again, with a view to simplify the writing, 
we do not renotate the subsequence picked out, but we shall assume in the subsequent 
arguments that from the very first there holds the property: from the weak convergence 
of II, k (.) to 9,. (*) follows the uniform convergence of yk (+) to y+ (.). But then, for a 
and A =min {Ai, A,} we can choose a number K, > K1 such that for all k > K, and for 

all t E it,, 61 there holds 
11 Yk (9 -Y* w [I s l/z &A 

Now, by virtue of (2.9) arid (2.11) the following estimates 

(2.11) 

II (YI(t*)-~f*~~k(Z)d5(I=u~*(t*)- yRLt*+~-yk(t*) Ij < 

6,,~*(t*)-~f*~A~~(~)d~I~+~~ Y*(t*+A’;y*tf*+A’ I/+ 
1. 

+ I( Y* y Yk Q*) [ < 2E 
(2.12) 
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are valid for any k > KS and A = min (A,, ~$3 . Moreover, (2.10) holds for almost all 
6, 1 5 - t, I\< A < Al and for k > KS > K, . Consequently, the inclusion 

f* A 
1 

-K s qJ k ff) 4 E VYC’ It*] 

t+ 
is valid by virtue of the convexity of the set I’*’ It*]. Hence, by virtue of (2.12). follows 

** @*) E v;(sQ If*] (2.13) 

In the arguments we have made E and t+ were chosen arbitrarily ; consequently, the 

validity of inclusion (2.7) almost everywhere on [z, 61, which is what we had to prove, 

follows from condition (2.13). Thus, all the hypotheses of the theorem on the existence 
of a fixed point have been fulfilled and, by the same token, the original assertion (2.1) 
has been proved. 

3. The coincidence of the absorption sets W; (a, B), Ws fz, 8) and lV* (z, #) 
signifies that the solution of the evasion problem, in general, may not necessarily exist 

in the class of continuous strategies u = v (2, z) and in the class of discontinuous strat- 

egies V 52: v (6 Z) formalizable within the framework of the theory of differential 

equations in contingencies. As an example illustrating this fact, here, as also in n], we 

can cite the problem of the pursuit of an inertialess point by a material point. 
By y we denote a two-dimensional vector whose components are the differences of 

the corresponding coordinates of the material and the inertialess points. and by z , the 

velocity vector of the material point. We obtain the following equations of motion: 

dy, / dt = .z+ - v,, dz, / dt = u,; dy,tdt=z,-vv,, dz,/dt=u,(3.1) 

where the controls satisfy the inequalities 

nrp + Uza G pa, vrs + vssg 4 

The set &f is specified by the condition yr = ys = 0. 

It is known [l] that in the given problem, for any initial game position x \ to] = 

= {Y [&II* Wall = x0 there exists a programed absorption instant 6” (Zd), i. e. 
there exists the smallest value of the parameter 9 = 6” (za) for which the inclusion 

x0 E w1 (to, 91 (3.2) 

is fulfilled, From the equalities (2.1) proved above, from inclusion (3.2), and from the 
definition of the sets w, (z, +), ws (r, 6) , W* (z, 6) it follows that when the 

second player selects any strategy from the class V,, V, or V* it is impossible to 
avoid contact during the time interval [to, 6” (x0) 1. It is also known [3, 71 that in the 
given problem there exist methods for forming the second player’s control, which guar- 

antee an evasion from hitting 0nto.M during as large a time interval as desired. Such 
a strategy, for example, is the mixed strategy v” = v” (1, x) extremal to some system 

of strongly a-stable sets [53 

s (t, I?,), s (t, 6,) n M = 0, to Cz ts 6, (3.3) 

Here we can choose the number 6, arbitrarily large, in particular, we can assume that 

6, > 6” (50). 
Thus, in the example being considered the evasion strategy V is contained in the 

class of mixed strategies but does not belong to the strategy class V*. Note that from 
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the relations V” E V (‘) , v” QG V* follows the existence of pieces of a nonsmooth 
concave boundary for the strongly v-stable sets S (t, 8,) in (3.3). Indeed, if the sets 
S (t, 6,) in (3.3) were not to have pieces of a nonsmooth concave boundary, then the 

extremal strategy Ve would belong to the class V *. (The validity of the last assertion 
ensues directly from the relations giving the function Ve = VI” (t, z) [S]). 

The example cited shows that the solution of the evasion problem exists only in the 
complete classes of mixed or approximate strategies and is not contained in the classes 
V, and V*. This fact should be taken into account when constructing strategies which 

are stable to the measurement errors in the current game position 2 [ t] = {t, x [ tl >. 
It can be shown that in a discrete scheme for realizing such strategies the step-size in 
the formation of the piecewise-constant controls should be chosen not less than some 

positive number determined by the magnitude of the admissible measurement errors. 

The authors thank N, N. Krasovskii for the formulation of the problem and for help 

with the work. 
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